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Abstract

Non-thermal discharges at atmospheric pressure and their applications are
receiving increased attention [1]-[7]. This is due to emerging novel uses of these
discharges in various industrial and military applications. Applications of special interest
to the US Airforce are the use of non-thermal plasmas as ramparts against directed high
power electromagnetic weapons, and as countermeasure to biological and chemical
warfare. In this context, the P.I. has been carrying out theoretical and experimental work
to advance the scientific and engineering knowledge in this field. Under this grant new
means and methods to generate non-equilibrium, large volume plasmas at atmospheric
have been investigated along with their potential applications as to suit the interest of
AFOSR. The work carried out during the 3 years duration of this grant has involved two
graduate students and one undergraduate student. Interdisciplinary collaborations have
been established to the benefits of the students. The results of our research have been
disseminated via conference presentations and archival publications.




Activities Covering June 1, 1997 to November 30, 1998

During the duration of this grant the P.I. has changed employment from the
University of Tennessee (UTK) to Old Dominion University (ODU). For this reason the
description of the various activities carried out under this grant are divided in two
intervals. While still at the University of Tennessee, the activities of the students
supported by this grant were the theoretical study of the interaction of microwaves with
atmospheric pressure plasmas, the design and construction of a Glow Discharge at
Atmospheric Pressure apparatus, and its use for biological decontamination experiments.
The results of this work have been presented in scientific conferences and published in
archival journals. Of special mention are two archival manuscripts co-authored by the
students: “Attenuation of Electromagnetic Waves by a Plasma Layer at Atmospheric
Pressure”, Int. J. Infrared & Millimeter Waves, Vol. 19, No. 3, pp. 453-464, 1998, and “
Images of Biological Samples Undergoing Sterilization by a Glow Discharge at
Atmospheric Pressure”, IEEE Transactions on Plasma Science, Vol.27, No.1, pp. 34-35,
1999. Copies of these manuscripts are included in the Appendix.

During the summer of 1997, one of students supported by this grant attended the
MAGIC training sessions held at the University of Michigan. During this course the
student was introduced to Particle-In-Cell (PIC) simulations of the interaction between
EM waves and space charges.

At the end of November 1998, the P.I. officially joined ODU and an agreement to
transfer the funds of this grant from UTK to ODU was initiated. This was done in the
form of a sub-grant from UTK to ODU, and Prof. Igor Alexeff was appointed as the UTK
Principal Investigator ( or the Technical point of contact for UTK).




Activities Covering the Period Dec. 1, 1998 to May 31, 2000

After joining Old Dominion University, the P.I. spent part of his time
coordinating the task of transferring the research to his new laboratory. A sub-grant with
the University of Tennessee was established, under which the funds to support a new
graduate student were provided. The paperwork including the sub-grant document was
completed by the end of March 1999. It took some time to recruit a student with an
American citizenship. However during this initial period collaborative work between the
P.I. and Prof. Alexeff on experiments involving the generation of atmospheric pressure
plasma with a DC power source was progressing. A technical paper titled “ A Steady-
State One Atmosphere Uniform DC Glow Discharge Plasma” was presented at the IEEE
International Conference on Plasma Science which was held in June 1999 at Monterey,
California. The abstract of the presentation is shown in the Appendix at the end of this
document. Also in April 1999, the P.I. and Prof. Alexeff jointly presented a paper titled *
Biological Applications of Non-Equilibrium Plasmas “ at the 1% International
Symposium on the Non-thermal Medical/Biological Treatments Using Electromagnetic
Fields and Ionized Gases. A copy of the abstract of this paper is included in the Appendix
(the funds supporting the attendance of the P.I. and Prof. Alexeff to the symposium were
obtained from other sources than this grant).

In June 1999, an ODU student (Mr. Paul Richardson) was hired as a Research
Assistant and supported by the funds of this sub-grant. After an initiation period during
the summer of 1999, Mr. Richardson who has a background in biology started carrying
out experiments on the biological decontamination of media by the “Resistive Barrier
Discharge”. The results of the work of Mr. Richardson were presented at the IEEE Int.
Conf. On Plasma Science, which was held in New Orleans, LA, June 2000. The abstract
of this presentation is included in the Appendix. Mr. Richardson’s work concentrated on
the identification of the biochemical pathways through which the plasma discharge
affects the cells of microorganisms such as Escherechia coli and Bacillus subtilis.

Interactions:

Both the P.I. and the student have been interacting with Prof. K. H. Schoenbach’s
group at ODU who are also working on the generation of large volume, non-thermal
plasmas. The P.I. has helped Prof. Schoenbach’s group in the design and ordering of a
microwave interferometer which allows the measurements of the electron number density
in highly collisional plasmas. In addition, measurements of the background gas
temperature in the GDAP were taken using the diagnostic facility developed by Prof.
Schoenbach’s group. These measurements were taken using a spectroscopic method
based on the rotational structure of the second positive system of nitrogen. Comparison
between measured spectra and simulated ones allows the determination of the
temperature. Temperatures in the 350-370 K were measured. The P.I. along with Prof.
Schohoenbach’s group presented their diagnostics work in an invited paper at the 1999
IEEE International Conference on Plasma Science, and in the 14" International
Symposium on Plasma Chemistry held in Prague, Czech Republic, August 1999. The




funds which supported the travel of the P.I. to this symposium came out of other sources
than this grant. A copy of the abstract and the full paper of the two above mentioned
papers are included in the Appendix.

The P.I also engaged in a collaborative effort with Prof. Alexeff of the University
of Tennessee on the power considerations in the GDAP. They published a paper on this
subject in the AIAA Proceeding of the 30" Plasmadynamics and Lasers Conference, held
in June 1999, in Norfolk, Virginia. A copy of this manuscript is included in the
Appendix. '

Finally, the P.I. has attended most of the meetings of the Air Plasma Ramparts
MURI Program, which is managed by AFOSR in cooperation with DDR&E.

Technical Description

Under this grant the students helped design, build, and test two methods to
generate non-thermal, large volume, atmospheric pressure plasmas. The first method was
based on the dielectric barrier discharge (DBD). Using the DBD configuration and
applying a low frequency RF power (kV at kHz) and using helium as a carrier gas, a
diffuse Glow Discharge at Atmospheric Pressure was achieved. Figure 1 and Figure 2
show the schematic and a photo of the discharge respectively. This discharge was used to
carry out investigations on the potential of the GDAP to kill microorganisms. The results
of these investigations were published in the IEEE Transactions on Plasma
Science,Vol.27, No.1 (shown in the Appendix). Also a numerical treatment of the
attenuation of microwaves by atmospheric plasma layers was developed, and the results
published in the International Journal of Infrared and Millimeter Waves, Vol. 19, No.3
(shown in the Appendix).

Another method to generate non-thermal, large volume, atmospheric pressure
plasmas was also developed. It is based on the “Resistive Barrier Discharge”. The
resistive barrier discharge relies on a high resistivity layer covering the metal electrodes
to prevent the transition of a diffuse discharge to an arc discharge. A schematic and a
photo of the discharge are shown in Figure 3 and Figure 4 respectively. This discharge
which can be driven by DC or AC sources was used for the study of the interaction of
plasma with the cells of microorganisms. The results of these experiments, shown in the
Appendix, were presented at the IEEE International Conference on Plasma Science, held
in June 2000 in New Orleans, LA (Abstract shown in Appendix)
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Fig. 1 Configuration of the Glow Discharge at Atmospheric Pressure (GDAP)

Fig. 2 Photo of the GDAP discharge




Conducting plate

High resistivity
material

— DC
™  Source

g L

< Plasma

Fig. 3a DC driven Resistive Barrier Discharge (RBD) at Atmospheric Pressure

Conducting plate

High resistivity
material

- : <€4— Plasma

Transformer
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Fig. 4 Photo of the RBD discharge
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ATTENUATION OF ELECTROMAGNETIC WAVES BY A
PLASMA LAYER AT ATMOSPHERIC PRESSURE

Mounir Laroussi and William T. Anderson
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Received December 16, 1997

Abstract

Plasma layers at atmospheric pressure, are good broad
band absorbers of electromagnetic radiation. However, to
get substantial attenuations, two parameters have to be
optimized. These are the plasma number density, and the
thickness of the plasma layer. It is found that in order to
be an effective attenuator of microwave radiation, a plasma
layer has to have a number density in the 1013 cm-3
range, and a thickness equal or larger than the wavelength

- of the incident wave. However, as the frequency increases,
the amount of attenuation tends to reach a limiting value
directly proportional to the number density.

Key words: Plasma, Layer, Attenuation, Microwave,
Atmospheric pressure.
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454 Laroussi and Anderson

I. Introduction

Plasmas at atmospheric pressure are highly collisional.
Unlike low pressure plasmas, their refractive index is
greater than unity across a frequency band in the
microwave range, and no sharp propagation cut-off at
intermediate frequencies is observed [1]. Consequently, if a
wave travels through a layer of pldsma at atmospheric
pressure, it undergoes some level of absorption regardless if
its frequency is below or above the plasma frequency. At
frequencies higher than a characteristic frequency:

®g =2;& (where wpe is the plasma frequency and v the

collision frequency) the reduction in the magnitude of the
transmitted wave is more due to absorption, through
collisional momentum transfer, than to reflection or
scattering of the incident wave [2]. However, only number
densities at or above 1013 cm-3 result in substantial
attenuation magnitudes. It is also found that although the
thickness of the plasma layer is important, the attenuation
ultimately reaches a saturation plateau, at high
frequencies. The dB value of the attenuation corresponding
to the plateau is directly proportional to the plasma
number density, and to the thickness of the plasma layer.

II. Total Attenuation

Figure 1 illustrates the case of a wave propagating
through air, then encountering a layer of uniform air

plasma, of thickness d. The grazing angle is defined as ¥ =
90° - §, where 6j is the incident angle. It is assumed that

the plasma is a lossy dielectric, and the thickness of the
plasma layer is comparable or larger than the wavelength of
the incident wave. After undergoing some reflection and
scattering, the wave is further attenuated as it crosses the
plasma layer. The transmitted wave emerges from the air
plasma layer with a substantially reduced field.

As was shown in previous work [1] - [5], atmospheric
pressure plasmas are highly collisional, and good broad
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air

plasma

F ig. 1 ~ Wave propagating through air, then an air plasma

layer.




456 Laroussi and Anderson

band absorbers. Their refractive index, p, and their
attenuation index, X, can be expressed as [2], [6].

1.1 Wg 2
p= 3 +-2- 1+ Ty , (1)
and ’
Yy
2 1/2
X = _l+_1+(8§) (2)
2 [ )
where the frequency wg is given by
2
a)pe
wg=— (3)

where Wpe is the plasma frequency, and v is the collision
frequency (v ~ 1 THz). The attenuation coefficient, a, is

given by
®
== X, 4)
where o is the wave frequency, and c the speed of light.

An electromagnetic wave crossing a uniform layer of
atmospheric pressure plasma of thickness d, will have its

field attenuated by a factor, T, given by

d
-« ) (5)

T=Exp cos Gt
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where 6; is the transmission angle. Using snell's law, the
angle 6 can be expressed as a function of the referative
index, and the grazing angle as follows

_ . —1[cosy
0, = sin ( . ) 6)

For frequencies much higher than g (0>>wg) the

attenuation index, X, and the attenuation coefficient, o, can
be approximated by [1]

2
ne
X= 4me jmvf’ @
and
2
ne
a= E—EOID—CV— f (8)
2
where 0)2 = 2C was used.
pe  me,

III. Data Analysis

Figure 2 shows the total attenuation, T, in dB, versus
the wave frequency, for plasma number densities in the

- 1012 ¢m-3 range, and a plasma layer thickness of 3 cm. It

can be easily concluded that attenuation reaches a
substantial level only when the plasma number density, n,
approaches 1013 ¢cmr3. Figure 3 and Figure 4 further
emphasize this fact.Also, as predicted by Equation (8), for

o

.
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Fig. 3
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w>>Wg the level of attenuation becomes independent of the

wave frequency, and directly proportional to the plasma
number density. Figure 3 shows that as the number

density reaches the 1013 cm-3 range, attenuation increases
to high levels. For example, at f= 10 GHz (A =d = 3 cm) the
incident power is attenuated by about 60 dB at n = 5 1013

ecm-3. However as the frequency increases and the
wavelength becomes shorter than the plasma layer
thickness, the attenuation reaches values up to 130 dB at
= 100 GHz. Figure 4 shows that at normal incidence, the
wave is less attenuated than oblique incidence, since it
travels a shorter distance through the plasma. This fact is
better illustrated by Fig. 5, which shows that at low grazing

angles, the attenuation is substantially higher. Under this

condition the wave also undergoes increased reflection [1] -

[3].

Figure 6 shows the importance of the thickness of the
plasma layer for increased attenuations. This is especially
significant, since the attenuation saturates at higher
frequencies, which renders its value independent on the
d/X ratio. However, for a fixed frequency, the dB value of
the attenuation is directly proportional to the plasma layer
thickness.

IV. Conclusion

. This paper showed that if a plasma layer at
atmospheric pressure is to be used as an attenuator of
electromagnetic waves, two parameters have to be
optimized: The plasma number density, and the thickness
of the plasma layer. If the number density, n, is in the low
1012 ¢cm-3 range, the plasma is practically transparent to
microwaves at frequencies higher than the characteristic

frequency wg. Only when n approaches and surpasses 1013

cm-3 would substantial attenuation occur. However, the
thickness of the plasma layer has to be at least comparable
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to the wavelength of the incident wave, if high attenuation
values are to be maintained.

[y
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Images of Biological Samples Undergoing Sterilization
by a Glow Discharge at Atmospheric Pressure

Mounir Laroussi, Senior Member, IEEE, Gary S. Sayler, Battle B. Glascock,
Bruce McCurdy, Mary E. Pearce, Nathan G. Bright, and Chad M. Malott
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Fig. 1. Experimental sewp of the glow discharge at atmospheric pressure
(GDAP). :

Abstract— Among the various industrial uses of the glow dis-
charge at atmospheric pressure (GDAP), biological applications
such as sterilization are under investigation. In this paper, we
present images of a liquid medium (Luria-Bertani broth with
tetracycline) contaminated by escherichia coli bacteria (strain
PBR 322) undergoing plasma treatment. In most cases, it is found
that an exposure time of two to 20 minutes leads to nearly a
complete kill of a 10°/ml E. coli population. The treatment time
necessary to obtain a complete kill depends on the plasma power
density, the type of gas used, the type of bacteria, and the type

of medium.

Index Terms— Bacteria, decontamination, glow discharge,
plasma, sterilization.

HE glow discharge at atmospheric pressure (GDAP) is

a dielectric barrier controlled discharge. It is made of a
chamber containing two electrodes, at least one of which is
insulated by a dielectric material (see Fig. 1). An ac voltage
of a few hundred volts to a few kilovolts, at a frequency of
a few kilohertz applied between the two electrodes generates
a uniform glow discharge [1], [2]. Various gases can be used,
but the most uniform stable discharge is obtained when helium
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Fig. 2. E. coli live-cells number versus exposure time: r1. r2. and r3 are
three samples treated under the same plasma conditions. and the Control is

a similar untreated sample.

l;"lg. 3. Photograph of the discharge. The electrodes are insulated copper
disks. 10 cm in diameter. and the gap distance is 3 cm.

is the main component of the gas mixture. The gap distance
between the electrodes can vary from a few millimeters to
a few centimeters. The discharge current is a pulse each
half cycle of the applied voltage. This is due to charge
accumulation on the dielectric, which prevents the transition of
the discharge to an arc. However, unlike the silent discharge
which is made of a large number of filamentary discharges,
and which exhibits a current with multiple sharp pulses each
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Fig. 4. (a) SEM photograph of an E. coli bacterium in the untreated control sample. (b) Appearance of E. coli cells after 30 seconds exposure to the plasma.

half cycle. the current pulse of a stable and uniform GDAP is
a single pulse per half cycle, with a slow decay time. The slow
decay of the current is due to the metastable states of helium,
which can ionize other atoms after the initial breakdown of the
gas mixture [3]. The discharge, therefore. displays a uniform
glow throughout the gap between the electrodes. The plasma
power density is in the 50-100 mW/cm? range.

The GDAP has recently been used for various applications,
such as surface modification [1], [4] and biological applica-
tions [5]. Since this discharge is of the nonequilibrium type,
the neutrals. ions. and electrons have different temperatures.
The electrons are much hotter than the ions. with kinetic
temperature in the 1-5 eV range. This is a perfect range for
the breaking of chemical bonds [6], which leads to the gen-
eration of chemically reactive free radicals. The free radicals
along with the ultraviolet radiation generated by the discharge
interact with the cells of the microorganisms at the molecular
and atomic levels causing cell damage or death depending
on the exposure time. Fig. 2 shows the case of three liguid
samples (r1. 2, and r3) containing 3 X 107/ml of E. coli
bacteria. After a plasma exposure time of ten minutes, a
reduction of two orders of magnitude in the population of E.
coli is observed in the three samples. A plasma treatment of
20 minutes of sample r1 reduces the population of E. coli to
approximately 300/ml. a reduction of five orders of magnitude.
Fig. 3 is a photograph of the discharge as it appears during
our experimental runs. A helium and air mixture is used. For
liquid samples. the best results are obtained when the plasma
comes in direct contact with the liquid. Fig. 4(a) is a scanning
electron microscope (SEM) photograph of an E. coli bacterium
living in the control sample (untreated). Fig. 4(b) shows E. coli

HML1fwa 2

NI

cells after 30 seconds exposure to plasma. Unlike the cells of
Fig. 4(a), the treated cells lost their rounded shape and appear
to be in the process of losing internal matter. This leads us
to the conclusion that the outer membrane of the cells must
have been punctured during its exposure to the plasma. With
a damaged outer membrane, the cells become very vulnerable
to the surrounding plasma environment, which contains active
species capable of causing lethal reactions within the cells.
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‘/& Steady-State One Atmosphere Uniform DC
Glow Discharge Plasma

Igor Alexeff, Mounir Laroussil, Weng Lock Kang,
and Ali Alikafesh; University of Tennessee.

We have produced a one-atmosphere DC glow
discharge plasma with a density (so far) of 1011
/em3. The basic discovery is twofold: First, we have
found a theorem that shows that any complex AC
geometry containing materials of varying dielectric
constant can be replaced by a DC system containing
materials of varying electrical conductivity. The
geometries of the electric field lines are identical, as
long as the varying permittivity in the AC system is
matched by the varying conductivity in the DC
system: Second, we have found a suitable electrode
material for the DC case that replaces the dielectric-
coated metal electrodes for the AC case. This new
slectrode material is inexpensive and robust This
new material is presently proprietary (A patent is
>ending.), but is to be discussed at ICOPS. In
addition, we intend to present photographs of the
apparatus in operation, as well as samples of the
1ew electrode material.

The advantages of a DC system over an AC
system are that it is less expensive and more
*fficient, as no RF power supply is necessary.
Actually, 60 Hz line power can also be used, and a
imple neon sign transformer suffices for

xperimental work. This plasma can be used for
hemical and biological decontamination, as well as
arface modification.

- Present address: Applied Research Center, Old
'ominion University.
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Effects of Non-Equilibrium Plasmas on Microorganism,

Mounir Laroussi
Applied Research Center
Old Dominion University

12050 Jefferson Ave.
Newport News, VA 23606
Igor Alexeff
Microwave & Plasma Laboratory
The University of Tennessee
Knoxville, TN 37996-2100

Abstract

Non-equilibrium piasmas have been shown to be excellem
sterilization agents [1]-[3]. Garate & Alexeff used a corona
discharge, and Laroussi & Sayler used an RF. driven glow
discharge. Also, most recently Alexeff & Laroussi have been
able to generate a glow discharge at atmospheric pressure using
a DC power source. The use of RF. and DC driven discharges
showed that a large population (~10* per ml) of harmful
microorganisms can be neutralized after a few minutes exposure
to the plasma. The optimum exposure time is dependent on the
type of microorganism, the medium supporting the
microorganism, the plasma power density, and the gas mixture
used in the discharge [3]. However, the biophysical and
biochemical effects leading to the death of the cells gf the
microorganisms are yet to be understood. In this paper, we
discuss the various factors, which play an active role in the cel-
plasma interaction.

(1] M. Laroussi “ Sterilization of Contaminated Matter with an
Atmospheric Pressure Plasma”, IEEE Trans. Plasma Sci.
Vol.24, No.3, pp. 1188-1191, 1996. o
[2] E. Garate et al. “ Atmospheric Plasma Induced Sterilization
and Chemical Neutralization™, in Proc. IEEE Int. Conf. Plasma
Sci., p. 183, 1998.

[3] M. Laroussi et al “ Images of Biological Samples
Undergoing Sterilization by a Glow Discharge at Atmospheric
Pressure”, IEEE Trans. Plasma Sci. Special Issue on Images 10
Plasma Sci., Vol.27, No.1, 1999.
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BIOLOGICAL APPLICATIONS OF NON-EQUILIBRIUM PLASMAS

L. Alexeff
Microwave & Plasma Laboratory, The University of Tennessee
- M. Laroussi ~
Applied Research Center, Old Dominion Umversxty
W. Kang and C. M. Malott
Microwave & Plasma Laboratory, The Univ. of Tennessee

Corona discharges [1], [2], and R.F. driven glow discharges at atmospheric pressure [3]
[4] have been shown to be effective means of biological decontamination. R.F. discharges suct.
as the Glow Discharge at Atmospheric Pressure [5] have the advantage of producing large
volume plasmas, but require expensive and bulky power supplies capable of producing several
kilovolts at frequencies of few kilohertz (audio frequencies). These high voltage audio
frequency supplies are not only expensive but are usually not available off-the-shelf, and can be
quite noisy and radiate power . Recently, Alexeff and co-workers solved this problem by
producing a large volume glow discharge at atmospheric pressure using a DC or 60 Hz power
source. The use of a DC or 60 Hz supply makes this discharge more practical and much less
expensive than the R.F. driven discharge.

The use of R.F. and DC driven discharges showed that a large population (~10® per ml)
of harmful microorganisms can be neutralized after a few minutes exposure to the plasma. The
optimum exposure time is dependent on the type of microorganism, the medium supporting the
microorganism (solid, liquid, slurry...), the plasma power density, and the gas mixture used in
the discharge [4]. Scanning Electron Microscope microphotographs of plasma-treated bacteria
show that the outer membrane of the microorganisms cells is punctured after only few seconds
exposure to the plasma [4]. Free radicals, such as OH, atomic oxygen, and radiation generated in
the discharge can therefore penetrate the cell and adversely alter its internal biochemistry. The
presence of oxygen in the discharge gas mixture renders it more lethal. Plots of the live cells
density versus exposure time show that, for similar plasma conditions, the kill rate depends

strongly on the type of medium supporting the microorganisms.

[1] E. Garate et al. “ Atmospheric Plasma Induced Sterilization and Chemical Neutralization”, in
Proc. IEEE Int. Conf. Plasma Sci., p. 183, 1998.

[2] J. G. Birmingham et al. “Corona Discharge Plasma Reactor for Decontamination”, in Proc.
IEEE Int. Conf. Plasma Sci., p.183, 1998.

[3] M. Laroussi “ Sterilization of Contaminated Matter with an Atmospheric Pressure Plasma”,

IEEE Trans. Plasma Sci., Vol.24, No.3, pp. 1188-1191, 1996.
[4] M. Laroussi et al. “ Images of Biological Samples Undergoing Sterilization by a Glow
Discharge at Atmospheric Pressure”, IEEE Trans. Plasma Sci. Special Issue on Images in Plasma

Sci., Vol.27, No.1, 1999.
[5] S.Kanazawa et al. “ Stable Glow Plasma at Atmospheric Pressure”, J. Phys. D: Appl. Phys.,

21, pp.838-840, 1988.
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Test Facility for High Pressure Plasmas*

Rolf Block, Mounir Laroussi; and Karl H. Schoenbach
Physical Electronics Research Institute/ Appl. Research Center
0ld Dominion University, Norfolk/ Newport News, VA

High pressure nonthermal plasmas are gaining increas-
ing importance because of their wide range of applications, e.g.
in air plasma ramparts, gas processing, surface treatment, thin
film deposition, and chemical and biological decontamination.
In order to compare various methods of plasma generation with
respect to efficiency, development of instabilities, homogene-
ity, lifetime etc., a central test facility for high pressure plasmas
is being established. .

The facility will allow us to study large volume (> 100
cm?), nonthermal (gas temperature: < 2000 K) plasmas over a
large pressure range (10°® Torr up to more than 1 atmosphere)
in a standardized discharge cell. The setup was designed to
generate plasmas in air as well as in gas mixtures. The avail-
able voltage range extends to 25 kV dc (10 kW power). The
electrodes can be water cooled. :

Electrical diagnostics include a 400 MHz, 2 GS/s 4
channel oscilloscope for current and voltage measurements and
the detection of the onset of instabilities.

For optical diagnostics, a CCD video camera is used to
record the appearance of dc discharges. A high-speed light in-
tensified CCD-camera (25 mm MCP with photocathode, gating
speed: 200 ps, adjustable in 10 ps steps) allows to study the
development of instabilities and can also be utilized in tempo-
rally resolved spectroscopic measurements.

Optical emission spectroscopy allows us to determine
plasma parameters such as electron density (through Stark
broadening measurements) and gas temperature measurements.
We have particularly concentrated our efforts on gas tempera-
ture diagnostics. The rotational structure of the second positive
system of nitrogen contains information on the neutral gas
temperature, which is identical with the rotational temperature
[1]. Taking the apparatus profile into account, the temperature
of the rotational excited molecules is determined by a compari-
son of simulated and measured data. A spectrograph with an
instrument profile of FWHM=0.1A is available.

Interferometry is well suited for electron density meas-
urements especially in weakly ionized plasmas. A 4 mm mi-
crowave interferometer will be used for this diagnostics. Num-
ber densities up to 7-10'* cm™ can be measured in this wave-
length range. For higher densities we plan to use an IR inter-
ferometer with a CO, laser as source.

* Funded by the Air Force Office of Scientific Research in Co-
operation with the DDR&E Air Plasma MURI Program.

[1] Rolf Block, Olaf Toedter and Karl H. Schoenbach, “Tem-
perature Measurement in Microhollow Cathode Discharges 18
Atmospheric Air”, Bull. APS 43, No. 6, NW1 2, p. 1478, 1998.
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OPTICAL DIAGNOSTICS FOR NON-THERMAL
HIGH PRESSURE DISCHARGES

Rolf Block, Mounir Laroussi, Frank Leipold, and Karl H. Schoenbach
Physical Electronics Research Institute/Applied Research Center
Old Dominion University
12050 Jefferson Ave.

Newport News, VA 23606

Abstract

Two important parameters of high pressure, non-thermal plasmas are the
gas temperature and the electron density. Optical emission spectroscopy and laser
interferometry have been used to obtain these parameters in a dc atmospheric
pressure hollow cathode discharge in air. Temgeratures at and below 2000K and
electron densities of approximately 10'® ¢cm™ have been measured. The two
diagnostic methods are a subset of techniques developed to characterize non-
thermal, high pressure plasmas in a newly established test facility at Old

Dominion University.

1. Introduction

Non-thermal, high pressure plasmas have recently been used in novel emerging
applications such as excimer ligth sources [1], surface modification of polymers [2], biological
decontamination [3], and air plasma ramparts [4,5]. Each of these applications requires a specific
set of plasma parameters. Diagnostic techniques applicable for high-pressure plasmas are
required to adequately characterize the discharge. In this paper, we concentrate on a
spectroscopic method, which yields information on the rotational structure of the second positive
system of nitrogen for gas temperature measurement, and on interferometric methods using IR or
microwave sources for electron density measurement. The experimental setups are presented,
and results obtained on plasma generated with a microhollow cathode discharge are discussed.

2. Temperature Measurement

Optical emission spectroscopy allows us to determine plasma parameters such as electron
density (through Stark broadening measurements) and gas temperature measurements. We have
particularly concentrated on the gas temperature diagnostics in non-equilibrium plasmas in air.
The rotational structure of the second positive system of nitrogen (transitions from the electronic




C-state to the B-state) contains information on the rotational temperature. Because of the low
energies needed for rotational excitation and the short transition times, molecules in the
rotational states and the neutral gas molecules are in equilibrium. Consequently, the rotational
temperature provides also the value of the neutral gas temperature.

The 0-0 band of the second positive system of molecular nitrogen, modeled as a rigid
rotor, has been simulated with the rotational temperature as variable parameter. In order to
determine the plasma temperature, the simulated spectra are compared with the measured one.
This comparison requires that the instrument profile (FWHM) of the spectrograph has to be
taken into account. This is done by convoluting the computed line spectra with the appropriate
Gauss function. Such simulated spectra for an FHWM=0.02nm are shown in fig. 1 for three
temperatures [6]. The curves are shifted vertically for a better separation.

Simuilation, FWHM=0.02nm
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Fig. 1: Simulated spectra of molecular nitrogen

Generally, resolving the rotational structure requires a monochromator with very high
resolution. A 0.5m imaging monochromator/spectrograph with a 3600 g/mm grating (with
240nm blaze wavelength) was used as dispersing element. Dual exit ports offer the versatility of
mounting two different detectors at the same time. One exit port is equipped with an exit slit and
a photomultiplier. The second port will be used for a fast light-intensified CCD-camera (25mm
micro channel plate with photocathode, gating speed down to 200ps, adjustable in 100ps steps),

which allows temporally resolved spectroscopic measurements.

Fig. 2 shows a measured spectrum of a microhollow cathode discharge (MHCD) in room
air at atmospheric pressure. A MHCD is a direct current, high pressure glow discharge between
two closely spaced electrodes, which contain circular openings [7]. The electrodes are separated
by an insulator (mica or alumina). In this experiment we used 100um thick molybdenum




electrodes, separated by a 125um thick sheet of alumina, with 100um holes. The dc voltage
across the electrodes was 380V, the discharge current was 12mA. The instrument profile of the
spectrograph was measured with a mercury lamp (line at 361lnm) as FWHM=0.02nm. A
comparison with simulated spectra resulted in a temperature of T=1500K.

MHCD in atmospheric air, FWHM=0.02nm
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Fig. 2: Measured spectrum of a MHCD in atmospheric air.

The nitrogen line at 337.1nm (within the second positive system of nitrogen) is the line with the
highest intensity and therefore easy to measure. This diagnostic can also be used in other gas
mixtures, if the application allows the addition of small amounts of nitrogen.

3. Electron Density Measurement

3a. Infrared Interferometry

The interferometer is designed as a heterodyne Mach-Zehnder interferometer. The source
is a CO,-laser operating at 10.6um. Figure 3 shows the experimental setup.

The laser beam is split in two beams. One beam passes through the plasma, while the second
beam passes along a reference path, where it undergoes a frequency shift of 40 MHz applied by
an acousto-optic modulator. Using a beam splitter, the two beams are allowed to interfere and
produce two signals, only one of which has the beat frequency of 40 MHz. This signal is then
compared to the driver signal of the acousto-optic modulator (which also has a frequency of 40
MHz). The phase shift is then converted to a voltage by a phase detector. The resolution of the

interferometer was about 0.01 degree.
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Fig. 3: IR-Interferometer for electron density measurement

The above-described technique is best applied to a pulsed system, with pulse repetition
rate of few kilohertz. This enables the separation of the phase shift caused by the electrons from
the phase shift caused by mechanical movement and thermal drifts. This method was applied to
plasma generated by a microhollow cathode discharge in atmospheric pressure room air, using a
sample with the same dimensions (100pm thick molybdenum electrodes, separated by 125pm
thick alumina sheet, with 100um holes). The voltage between the electrodes was 390V, the
discharge current was 12mA. The plasma was 100pum wide and 400um long. Electron densities
on the order of 10'® cm™ were measured. In order to provide evidence that the laser does not
affect the plasma in the micro cavity, experiments with varying laser intensity have been
performed. Fig. 4 shows that the electron density measurements are independent of the laser

beam power.
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Fig. 4: Electron density versus laser beam power




3b. Microwave Interferometry

In order to extend the range of electron density measurements to lower values, a
microwave interferometer is bein§ developed. The increase in wavelength allows us to expand
the diagnostic range down to 10" cm, however on the expense of spatial resolution. Figure 5

shows the interferometer design we adopted for our experiments.
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Fig. 5: Microwave Interferometer for number density measurement

The microwave interferometer, or phase bridge, shown above operates as follows. A
microwave signal generated by a Gunn diode oscillator is divided in two equal portions by a
Short Slot Coupler. One portion is transmitted through the plasma. The second portion is
channeled to a second power divider which splits the signal to drive the LO input of the I-Q
mixers. The signal transmitted by the plasma is also split in two portions, which drive the RF
inputs of the I-Q mixers. Since both the LO and RF inputs of the mixers are at the same
frequency, 2 DC signal is obtained at the IF output of the mixers. Calibration of the bridge is
achieved by setting the Level Set Attenuator to the maximum attenuation position, measuring the
DC offset of the mixers, varying the Phase Shifter through 360°, and recording the DC voltage at
the IF output of the mixers. The measurement is repeated for varying level of attenuation. This
set of data is then used to analyze actual phase shifts undergone by the microwave signal with
the plasma ON. The accuracy of the measurement is determined by the resolution of the voltage

measurements.

Conclusion

Spectroscopic measurements of the structure of the second positive system of nitrogen
allow us to accurately determine the background gas temperature in nonthermal plasmas. Our
method was used on a microhollow cathode discharge. Temperatures at and below 2000 K were
measured. Infrared and microwave interferometry allow us to obtain information on the electron




number density over a wide range. Using the IR interferometer on a microhollow cathode
discharge plasma, we measured electron densities close to 10" cm™. A specially desi%ned
microwave interferometer will allow us to measure electron densities down to about 10" cm™.
The diagnostic techniques presented in this paper are a part of a test facility for high
pressure, non-thermal plasmas. This test facility allows to study large volume plasmas over a
large pressure range in a standardized discharge cell. The facility also includes electrical (large
bandwidth scopes for current-voltage measurements) and optical (high speed CCD camera to

study the development of instabilities) diagnostics.
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ABSTRACT

The Glow Discharge at Atmospheric
Pressure (GDAP) is a dielectrical barrier
controlled  discharge.  Recently, various
industrial applications of  this type of
discharge have emerged. To better control the
operation of the GDAP, a basic understanding
of the relationship between the macroscopic
parameters such as voltage and current, and
the plasma parameters such as the number
density, is very important. In this context the
authors present new and interesting results
based on an analytical model of the discharge
which they developed. It is found that two
modes of operation of the discharge exist. A
“low frequency” mode (f < 20 kHz), and a
“higher frequency” mode (f > 20 kHz). The
higher frequency mode requires less applied
input power to maintain a stable discharge
with a comparable plasma number density as
the “low frequency” mode. This result is of
importance in applications where the power
budget is an issue, and where lower applied
voltages are desired.

Copyright © 1999 The American Institute of
Aeronautics and Astronautics Inc. All rights reserved.

INTRODUCTION

The Glow Discharge at Atmospheric
Pressure (GDAP) is generated within a gap
between two electrodes, at least one of which
is insulated'?. It is generally driven by an AC
voltage source capable of delivering few
Kilovolts at a frequency of few Kilohertz.
Most recently Alexeff & Laroussi were able to
generate a similar large volume discharge at
atmospheric pressure using a 60 Hz or a DC
power source®”. Novel industrial applications
of the GDAP such as the surface modification
of polymers’, and the decontamination of
media® are attracting increased interest. To
optimally tailor the plasma generated by the
GDAP to a particular application the authors
developed an analytical model of the
discharge®. This model relates imput
parameters such as the amplitude and the
frequency of the applied voltage to output
parameters such as the discharge current and
the electron number density. In this paper
calculations of the current, total applied
power, dissipated energy, number density,
etc... are presented for the two modes of

operation of the discharge. -

American Institute of Aeronautics and Astronautics
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MODEL

The model developed by the authors is
based on the electrical characteristics of the
discharge. In this model two non-linear
differential equations which relate the applied
voltage to the resulting current and electron
number density are derived®. The production
and loss mechanisms of the charged particles
are taken into account. The two differential
equations are given as follow

dn iz )
—=K,K, ——K3n~ 1
priaki b 3n )
di_ndV kK, -
dt K, dt n
(K3 + i (2)
1~d

where i, V, and n are respectively the
discharge current, the applied voltage, and the
number density. Cq is the capacitance formed
by the combination of the dielectrics and the
sheath. K;, K; and K; are constants
respectively related to the collosionality and
geometry of the plasma, the ionization rate,
and the recombination rate. The constants K,
K,, and K; are calculated as follow

= 3)
Where v, m. e, d, and A are respectively the
collision frequency, the electron mass, the
electronic charge, the discharge gap distance,
and the electrode area,

K|=

ionization efficiency 4)

25T :
ionization potential .volume

K

and

K3 = constante.c.v (5)
where o is the bulk recombination cCross-
section, and v is the electrons mean velocity.

RESULTS AND DISCUSSION

The results are obtained for two
insulated electrodes 3 cm apart, with an area
of 7.85 10° m, helium gas, and a sinusoidal
applied voltage. Two frequencies, 15.6 kHz
and 35.7 kHz, representing two operational
modes of the discharge, are selected. The
electron-neutral collision frequency is 10"
Hz. The initial conditions are i(0) = 1pA, and
n(0) = 10'° m*. The magnitude of the applied
voltage is adjusted so as to obtain comparable
number densities in both operational modes (f
=15.6 kHz, and f= 35.7 kHz). For the case of
£=15.6 kHz the peak voltage is 6 kV, and for
the case of f = 35.7 kHz the peak voltage is
3.5kV.

Fig. la and Fig. 1b show that the
discharge current has two different waveform
shapes. For f=15.6 kHz the current has the
form of a wide pulse each half cycle. This is
the well known mode observed by Kanazawa
et al'. For £= 35.7 kHz the current looks more
like a distorted sinusoid, phase shifted with
respect to the applied voltage. Fig. 2a and Fig.
7b show the number density. For both cases
the number densities are comparable with
stronger oscillations in the lower frequency
case. Fig. 3a and Fig. 3b show the applied
power. The average power in the higher
frequency case is about half that of the lower
frequency case. This is an interesting result
since for both cases the number densities are
equivalent. In the higher frequency mode a
lower input power is therefore capable to
generate a discharge as dense and more stable
(lower oscillations of the number density) than
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the low frequency mode. Fig. 4a and Fig. 4b
are Current versus Voltage plots. The two
modes of operation of the discharge are more
apparent in these plots. For f =15.6 kHz the
iV curve is a distorted parallelogram, while
for £= 35.7 kHz the LV curve is more like an
ellipsoid. Fig 5a and Fig. 5b show the energy
dissipated in the discharge during a 150 ps
period. The lower frequency mode dissipates
about twice as much energy as the higher
frequency mode. Fig. 6a and Fig. 6b show the
accumulated charge on the dielectric during a
time period of 150 ps. Although the average
value of the charge is equivalent in both cases,
the oscillations are much more pronounced in
the lower frequency mode. Fig. 7a and Fig. 7b
show the resistance of the plasma layer for
both modes. The average value is about 100
kQ in both cases. :

CONCLUSIONS

. Two distinct modes of operations of
the Glow Discharge at Atmospheric Pressure
have been outlined: a “Low Frequency” mode
and a “High Frequency” mode. Less applied
power to generate and sustain a stable
discharge with a certain number density is
required in the higher frequency mode. The
presented model also allows the calculation
and time evolution of key parameters such as
the electron number density, dissipated
energy, the resistance of the discharge, the
charge accumulation on the dielectrics etc...
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ON THE USE OF THE RESISTIVE BARRIER
DISCHARGE TO KILL BACTERIA: RECENT RESULTS*

John P. Richardson !, Francis F. Dyer !, Fred C. Dobbs '
Igor Alexeff?, and Mounir Laroussi |
1. Old Dominion University, Norfolk, VA
2. Tke University of Tennessee, Knoxville, TN

ABSTRACT

Large volume, atmospheric pressure, low-temperature plasmas
have been shown to be effective biological and chemical
d?contamination devices [1]-[3]. However, most of the
discharges use RF power sources capable of generating high
voltages at relatively high frequencies. Such sources are not only
expepsive, but they radiate power which can potentially affect
sensitive electronics located in their surroundings. In order to
solve these cost and technical drawbacks, Alexeff, Laroussi, and
co-yvorkers [4] introduced the Resistive Barrier Discharge (RBD)
which uses either DC or quasi-DC (60 Hz) sources. With an input
power less than 1 kW, and helium as a carrier gas, the RBD is
capable of generating a few liters of low-temperature plasma, at
atmospheric pressure.

Recent work by Laroussi, Dobbs, and co-workers has
d;mgx.xstrated that the plasma generated by the RBD decreases
vxabxhty (estimated by cultural techniques) of bacteria. In this
paper, in addition to reporting on the germicidal potential of the
RBD, an attempt to identify some of its biochemical impact on
bacterial cells will be made.

[1] M. Laroussi “ Sterilization of Contaminated Matter with an
Atmospheric Pressure Plasma”, IEEE Trans. Plasma Sci., Vol.24,
No.3, pp. 1188-1191, 1996.

[2] J. G. Birmingham et al. “Corona Discharge Plasma Reactor
for Decontamination”, in Proc. IEEE Int. Conf. Plasma Sci.,
p.183, 1998.

{31 H. W, Hermann, . Henins, J. Park, and G. S. Selwyn, “
Decontamination of Chemical and Biological Warfare (CBW)
Agents Using an Atmospheric Pressure Plasma Jet”, Phys.
Plasmas, Vol. 6, No. 5, pp.2284-2289, 1999.

(41 L Alexeff, M. Laroussi, W. Kang, and A. Alikafesh, “ A
Steady-State One Atmosphere Uniform DC Glow Discharge
Plasma”, In Proc. IEEE Int. Conf, Plasma Sci., p. 208, 1999.

* Work supported in part by AFOSR contract F49620-97-1-0472
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The D.C Atmospheric Barrier Plasma Discharge —
Recent Results
Igor Alexetf, Carlton Garland, Weng Lock Kang,
The University of Tennessee, Mounir Laroussi,
Old Deminion University

We have been generating intense, steady - state, D. C.
discharges in air and other gases, notably hclium. Previous
results were presented at ICOPS in June, "99. The discharge
appears to fill the chamber volume uniformly, without sparks or
striations. The basic improvement that prevents the discharge
tfrom contracting into a spark or an arc is an unglazed ceramic
plate that has bcen moistened with water to make it into a
semiconductor (patent pending). With this improvement, we
have put up to 300 Watts of steady — state D. C. power (30 KV.
at 10 mA. — the power supply limit.) into about a liter of hclium
plasma al atmospheric pressure. The discharge also works well in
atmospheric pressure air, although the gap between the discharge
electrodes must be reduced. ‘The system has run for over 3U
minutes with no problems. The system also works well on 60 Hz.
A. C. from a simple transformer, such as that used for neon
signs.

For diagnostics, we have developed an apparently new
diagnostic probe, the Diffusion Probe, that is uscful in'the D. C.
or low ~ frequency A. C. regimes where ion and clectron motion
is diffusive, rather than ballistic, as is the case for the Langmuir
Probe. With this probe, we have measured plasma ion densities
of over 10 cxp. 12 per cc. A brief, incomplete, overview of the
probe operation is as follows: The probc is composed of two
small parallel plates, placed perpendicular to the ion flow. First,
the open — circuit voltage is measured hetween the two probes, to
measure the electric field in the partially ionized gas. Second, the
short - circuit current is measured to obtain the ion drift current
in the gas. Knowing the ion mobility for the gas in question, we
can solve for the ion density.

One recent, surprising result is that although the device
operates in the steady — state and appears to the cyc to be a
quiescent, D. C. discharge, it is extremely active in the R. F.
range. We have used both a photomuitiplier and a high — speed
photodiode for optical studies, and a Tektronix current probc on
the feed from the power supply. We find two surprising results.
First: the plasma light and discharge current are pulsed, not
steady — state. The pulses are narrow, with a repetition rate of
about 10 kHz. Second; thce plasma is also oscillating at a
frequency about 5 times higher. The mechanism of this unusual
behavior is at present not understood.
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